function
Class LearningAlgorythm

java.lang.Object
  extended by function.LearningAlgorythm

public class LearningAlgorythm
extends java.lang.Object

Learning algorithm


Constructor Summary
LearningAlgorythm(Population oldPopulation, int maxIteration)
          Creates a new instance of LearningAlgorythm
 
Method Summary
 ChromosomeModel getBestChromosome(int iteration)
          Return best chromosome in interation
 java.util.ArrayList getBestChromosomeList()
          Return ArrayList of best chromosome.
 CrossFunctionModel getCrossFunctionModel()
          Return reference to Cross Over Function
 int getMaxIteration()
          Return number of iteration
 Population getNewPoplation()
          Return reference to new population
 Population getOldPopulation()
          Return reference to populatoin before learning
 ReproductionFunctionModel getReproductionFunctionModel()
          Return reference to reproduction Function Model
 boolean isMakeCrossOver()
          Check if cross over is used in learning algorithm
 boolean isMakeMutation()
          Check if mutation is used in learning algorithm
 boolean isMakeReproduction()
          Check if reproduction is used in learning algorithm
 void learn()
          Start learning algorithm
 void setCrossFunctionModel(CrossFunctionModel crossFunctionModel)
          Set reference to Cross Over funciton
 void setMakeCrossOver(boolean makeCrossOver)
          Set using cross over in learning
 void setMakeMutation(boolean makeMutation)
          Set using mutation in learning
 void setMakeReproduction(boolean makeReproduction)
          Set using reproducion in learning
 void setMaxIteration(int maxIteration)
          Set iteration number
 void setOldPopulation(Population oldPopulation)
          Set old population
 void setReproductionFunctionModel(ReproductionFunctionModel reproductionFunciton)
          Set reproducion function model
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

LearningAlgorythm

public LearningAlgorythm(Population oldPopulation,
                         int maxIteration)
Creates a new instance of LearningAlgorythm

Parameters:
oldPopulation - Old population
maxIteration - Number of iteration
Method Detail

setCrossFunctionModel

public void setCrossFunctionModel(CrossFunctionModel crossFunctionModel)
Set reference to Cross Over funciton

Parameters:
crossFunctionModel - reference to Cross Over Function

setMakeCrossOver

public void setMakeCrossOver(boolean makeCrossOver)
Set using cross over in learning

Parameters:
makeCrossOver - Set using cross over in learning

setMakeMutation

public void setMakeMutation(boolean makeMutation)
Set using mutation in learning

Parameters:
makeMutation - Set using mutation in learning

setMakeReproduction

public void setMakeReproduction(boolean makeReproduction)
Set using reproducion in learning

Parameters:
makeReproduction - Set using reproducion in learning

setMaxIteration

public void setMaxIteration(int maxIteration)
Set iteration number

Parameters:
maxIteration - Iteration number

setOldPopulation

public void setOldPopulation(Population oldPopulation)
Set old population

Parameters:
oldPopulation - Reference to population

setReproductionFunctionModel

public void setReproductionFunctionModel(ReproductionFunctionModel reproductionFunciton)
Set reproducion function model

Parameters:
reproductionFunciton - Reference to reproducion function model

getReproductionFunctionModel

public ReproductionFunctionModel getReproductionFunctionModel()
Return reference to reproduction Function Model

Returns:
Reference to reproducion function model

isMakeCrossOver

public boolean isMakeCrossOver()
Check if cross over is used in learning algorithm

Returns:
return information about cross over

isMakeReproduction

public boolean isMakeReproduction()
Check if reproduction is used in learning algorithm

Returns:
return information about reproduction

isMakeMutation

public boolean isMakeMutation()
Check if mutation is used in learning algorithm

Returns:
return information about mutation

getMaxIteration

public int getMaxIteration()
Return number of iteration

Returns:
Return number of iteration

getCrossFunctionModel

public CrossFunctionModel getCrossFunctionModel()
Return reference to Cross Over Function

Returns:
Reference to cross over function

getNewPoplation

public Population getNewPoplation()
Return reference to new population

Returns:
Reference to new population

getOldPopulation

public Population getOldPopulation()
Return reference to populatoin before learning

Returns:
Reference to population before learning

learn

public void learn()
Start learning algorithm


getBestChromosomeList

public java.util.ArrayList getBestChromosomeList()
Return ArrayList of best chromosome. Each chromosome is the best chromosome in interetion

Returns:
ArrayList of best chromosomes

getBestChromosome

public ChromosomeModel getBestChromosome(int iteration)
Return best chromosome in interation

Parameters:
iteration - iteration number
Returns:
Reference to best chromosome